Apple and Differential privacy

“We believe you should have great features and great privacy,” Federighi told the developer crowd. “Differential privacy is a research topic in the areas of statistics and data analytics that uses hashing, subsampling and noise injection to enable…crowdsourced learning while keeping the data of individual users completely private. Apple has been doing some super-important work in this area to enable differential privacy to be deployed at scale.”

Differential privacy, translated from Apple-speak, is the statistical science of trying to learn as much as possible about a group while learning as little as possible about any individual in it. With differential privacy, Apple can collect and store its users’ data in a format that lets it glean useful notions about what people do, say, like and want. But it can’t extract anything about a single, specific one of those people that might represent a privacy violation. And neither, in theory, could hackers or intelligence agencies.


Tan E Guang Eugene (Mr.)

Associate Research Fellow

Centre of Excellence for National Security (CENS)